Abstract:
Previous research found the Conners Continuous Performance Test (3rd ed; CCPT3) to predict concussion outcomes, but
delivery was on a desktop device which can undermine broad use.
We examine whether a shortened, mobile CCPT3 predictsconcussion symptom endorsement and severity, and evaluate whether
the predictive validity changes after controlling for ADHD.
From July 2021 to January 2022, 143 participants aged 11 to 23 (approximately 30% female), including 63 consecutively
assessed individuals suspected of having a concussion, and 80 randomly selected healthy controls, completed the mobile
CCPT3 and the 31-item CDC concussion symptom checklist with severity ratings. Regression analyses indicate the mobile
CCPT3 accounts for 19% variance (p < 0.01, d=0.97) in symptom severity and 17.2% variance (p < 0.01, d=0.91) in symptom endorsement
Findings persist after controlling for the experience of ADHD. Moreover, CCPT3 scores can differentiate among those
suspected of having a concussion, predicting 27.6% variance in total symptom severity (p = 0.02, d = 1.24).
Thus, a brief, objective mobile cognitive assessment yields large effect sizes when predicting concussion symptoms, and
findings are comparable to previous research. Because the mobile assessment can be administered almost immediately
post-injury and in between clinical visits, it can further inform post-injury medical care, rehabilitation, and
return-to-play decisions.
Abstract:
A growing consensus among concussion experts is that a formal gait assessment is an essential component in
return-to-play decisions. Concussion research illustrates that gait variables follow a pattern of recovery that may be
more protracted than cognitive recovery, suggesting that gait dynamics may be more sensitive to the sequelae of
concussion, and accelerometer data may enhance that sensitivity.
However, pediatric neuropsychologists have few available options for quantitatively assessing gait. We here introduce a novel gait technology, the BioKinetoGraph
(BKG), that provides multiple metrics for assessing gait, including within the domains of power, stride, balance
(stability), and symmetry.
We demonstrate how BKG data can be collected using a mobile application called SportGait,
which is available for use on any smartphone. We present data illustrating the test–retest reliability of the mobile BKG
in a sample of 4150 ostensibly healthy individuals, with an overall mean correlation coefficient of .79 between two
walks across the assessed domains. We also provide quantitative and qualitative data to illustrate recovery, including a
presentation of norm- and self-referenced comparisons.
Additional recovery data is presented using qualitative
information in the form of stabilogram and displacement graphs. Because the BKG is broadly available, reliable, valid,
and does not require extensive or costly equipment (i.e., only requiring a mobile device and the App), it represents a
significant advancement in quantifying gait in a wide range of settings.
Abstract:
Background
Gait accelerometer (sensor) technology has proven effective in predicting several medical outcomes, but less is known regarding its prediction of concussion symptoms relative to conventional measures of gait and balance.
Objective
To establish the reliability and validity of gait accelerometer data. We first examine test-retest reliability and the impact of footwear and walking surfaces on gait. We then examine the convergent validity between gait accelerometer data and the NIH 4-meter gait test. Finally, we compare gait accelerometer data to gait speed and balance measures for predicting concussion symptoms.
Method
Study 1 used a crossover study design with 60 participants to evaluate retest reliability and examine the effects of footwear (shoes/no-shoes) and walking surface (tile floor/grass) on gait accelerometer data. Study 2 employed a cross-sectional design with 1008 participants to assess gait accelerometer correlations with NIH 4-meter gait and the prediction of Centers for Disease Control and Prevention (CDC) concussion symptoms relative to previously validated gait and balance measures.
Results
Retest reliability (4-day average retest interval) for the no shoes/tile surface condition ranged from .72-.91 (mean = .80). Significant effects of footwear and especially walking surface revealed by Analysis of Variances (ANOVAs) on gait accelerometer data for the power, stride, balance, and symmetry domains indicate the need to standardize these variables. Gait accelerometer data correlates significantly with NIH 4-meter gait scores. Regression analyses found that gait accelerometer data predicts CDC concussion symptom endorsement, outperforming the BESS and NIH 4-meter gait at least three-fold.
Conclusion
When standardized on footwear and walking surface, gait accelerometers achieve strong test-retest reliability, converge with established measures of gait speed, and are superior to established measures of gait speed and balance when predicting concussion symptoms. Gait accelerometers represent a rapid tool for collecting additional gait information to quantify the behavioral sequelae of concussion and potentially inform return-to-play decision-making.
Abstract: The quantitative assessment of the sequalae of concussion is of increasing importance given the prevalence of concussions, also referred to as mild traumatic brain injures (mTBIs), and our evolving understanding of the adverse consequences associated with their clinical mismanagement (e.g., Daneshvar et al., 2011). For example, when individuals return to activities such as sports when they have not fully recovered, their risk of subsequent concussive and orthopedic injury is markedly elevated (e.g., Jildeh, Meta, Young, Page, Nwachukwu, Westermann, & Okoroha, 2021; Nyberg, Mossberg, Lysholm, & Tegner, 2015). This highlights the need to properly assess concussions and their sequelae.
Abstract: A recent Consensus Conference proposed subtyping concussive injuries into 5 categories. We propose adding a neuromotor subtype. Abnormal motion is a key feature of brain injury, as concussions can impact the neurological systems controlling gait. Neuromotor function can remain abnormal after symptom resolution and may be superior to self-report for tracking recovery. Neuromotor function can also define co-occurring orthopedic injuries and reveal vulnerabilities which could reduce injury risk.
Abstract:
Objective
Brevity is critical to the broad adoption of any screening measure. We examine the efficacy of a short Conners Continuous Performance Test (CCPT 3) to screen for concussion symptoms.
Method
Data were from 20 U.S. sites, including university/schools conducting baseline testing (N = 817) and post-concussion assessments in medical settings (N = 108) from March 2018 to March 2020. Nine hundred twenty-five participants (57.3% female) aged 8–66 (M = 19.4, SD = 6.1) completed the computerized CCPT 3, Balance Error Scoring System, NIH 4-meter gait test, and 31-item Centers for Disease Control and Prevention (CDC) concussion symptom checklist.
Results
Short CCPT 3 scores correlate highly with full CCPT 3, with coefficients of .70–.96 (M = .88). Short CCPT 3 explains 16.8% variance in CDC concussion symptoms (F(8, 910) = 23.01, p < .001; Cohen’s d = .90) and provides incremental validity (15% variance; d = .78) over behavioral measures (Fchange (8, 842) = 20.11, p < .001). Predictive validity of the short CCPT 3 was greater for those having a recent concussion (22.1% variance, d = 1.07; F(8, 97) = 3.45, p= .002). Scores also predict concussion history.
Conclusions
The short CCPT 3 yields large effect sizes when predicting CDC concussion symptoms, compares favorably to other concussion measures, and shows no trade-off from the full CCPT, which has previously predicted concussion symptoms and severity. Short CCPT 3 scores can objectively quantify cognitive functioning to serve as a screener and inform return-to-play decisions even for post-acute presentations in children, adolescents, and adults.
Abstract:
Background
Dangers of sports-related concussion are well documented, and those participating in sports involving significant contact are at an even higher risk relative to the general population. Despite extensive concussion education, athletes still make decisions that would be considered unsafe, such as underreporting and continuing to play despite experiencing symptoms. Although baseline testing is an increasingly common practice at all levels of sport, little is known about its ability to improve player safety perceptions.
Aims
The current study examines whether taking part in a standardized baseline concussion assessment changes athletes’ knowledge, attitudes, or perceptions of concussion safety decisions.
Method
A total of 229 club and National Collegiate Athletic Association athletes completed a modified Rosenbaum Concussion Knowledge and Attitudes Survey–Student Version (RoCKAS-ST), which was used to evaluate knowledge, attitudes, and perceptions of concussion safety decisions in hypothetical scenarios. Athletes were randomly assigned to either complete baseline concussion testing prior to the RoCKAS-ST or complete baseline testing after the RoCKAS-ST.
Results
Athletes randomly assigned to complete baseline testing before the RoCKAS-ST demonstrated greater agreement with favorable concussion safety decisions in hypothetical scenarios relative to athletes completing baseline testing after the RoCKAS-ST. The two conditions did not differ with respect to concussion knowledge or attitudes.
Discussion
Baseline testing appears to have an added benefit of resulting in more favorable perceptions toward making safe decisions following suspected concussions.
Conclusion
Baseline testing may provide an effective means of improving a broader constellation of concussion safety behavior, particularly in club athletes, who are typically underserved in terms of concussion-related resources and care.
Abstract: Machine learning (ML) techniques can help harness insights from data that complement and extend those that can be attained by traditional statistical methods. The current article introduces clinicians to concepts underlying ML and explores how it can be applied within the domain of neuropsychology. Specifically, we illustrate an application of ML to a dataset that includes a battery of standardized measures designed to provide diagnostic support for concussions, including standardized neurocognitive (CPT 3) and neurobehavioral (BESS, NIH 4 meter gait) measures, gait sensor data, and a CDC concussion symptom checklist. These variables were used to predict the decision-making of a pediatric neurologist evaluating a group of child/adolescent patients. With a sample of 111 cases, ML (using a general linear model and deep learning as illustrations) achieved accuracies of 91% and 84.8% and AUCs of 1.0 and .947, respectively, when predicting the neurologist’s binomial decision-making (safe/remove). In presenting the data and various considerations for interpretation, we attempt to balance both the promise and perils of ML.
Abstract: Effective screening for concussion is increasingly important, and medical professionals play a critical role in diagnostic and return-to-play decisions. However, few well-validated measures are available to assist in those decisions. This study aims to determine whether previously validated measures assessing neurocognitive and neurobehavioral abilities can predict Centers for Disease Control (CDC) concussion symptom endorsement in a sample of child or youth athletes.
Abstract: Sports-related concussions are particularly dangerous injuries due to their complex nature and difficulties associated with diagnostic and return-to-play decisions. Some of the most commonly employed assessment tools have been shown to be unreliable, leading to misdiagnoses. Guidelines for selecting more effective concussion assessment instruments and the use of such tests in urgent care settings are here suggested as an optimal framework for improved care.