Allen, D. N., Leary, B. D., Thaler, N. S., & Cross, C. (2010). Memory and attention profiles in pediatric traumatic brain injury. Archives of Clinical Neuropsychology, 25, 618–633. https://doi.org/10.1093/arclin/acq051
Beck, L. H., Bransome, E. D., Jr, Mirsky, A. F., Rosvold, H. E., & Sarason, I. (1956). A continuous performance test of brain damage. Journal of consulting psychology, 20(5), 343–350. https://psycnet.apa.org/doi/10.1037/h0043220
Chen, H. C., Koh, C. L., Hsieh, C. L., & Hsueh, I. P. (2009). Test–re-test reliability of two sustained attention tests in persons with chronic stroke. Brain Injury, 23(9), 715-722. https://doi.org/10.1080/02699050903013602
Keith Conners, C., Sitarenios, G., & Ayearst, L. E. (2018). Conners’ Continuous Performance Test Third Edition. Encyclopedia of Clinical Neuropsychology. https://doi.org/10.1007/978-3-319-57111-9_1535
Frazier, T. W., Demaree, H. A., & Youngstrom, E. A. (2004). Meta-analysis of intellectual and neuropsychological test performance in attention deficit/hyperactivity disorder. Neuropsychology, 18(3), 543. https://doi/10.1037/0894-4105.18.3.543
Galbiati, S., Recla, M., Pastore, V., Liscio, M., Bardoni, A., Castelli, E., & Strazzer, S. (2009). Attention remediation following traumatic brain injury in childhood and adolescence. Neuropsychology, 23(1), 40. https://doi.org/10.1037/a0013409
Keith, J., Williams, M., Taravath, S., & Lecci, L. (2019). A clinician’s guide to Machine Learning in neuropsychological research and practice. Journal of Pediatric Neuropsychology, 5 (4), 177–187. https://doi.org/10.1007/s40817-019-00075-1
Lecci, L., Freund, C.T., Ayearst, L.E., et al. (2021). Validating a short Conners’ CPT3 as a screener: Predicting self-reported CDC concussion symptoms in children, adolescents, and adults. Journal of Pediatric Neuropsychology, 7, 169–181. https://doi.org/10.1007/s40817-021-00107-9
Lecci, L., Williams, M., Taravath, S., Frank, H. G., Dugan, K., Page, G. R., & Keith, J. R. (2019). Validation of a concussion screening battery for use in medical settings. Archives of Clinical Neuropsychology, 35, 265-274. https://doi.org/10.1093/arclin/acz041
Moore, S.A., Hickey, A., Lord, S., et al. (2017). Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: a feasibility, validity and reliability study. Journal of NeuroEngineering and Rehabilitation, 4(1). https://doi.org/10.1186/s12984-017-0341-z
Naunheim, R. S., Matero, D., & Fucetola, R. (2008). Assessment of patients with mild concussion in the emergency department. The Journal of head trauma rehabilitation, 23(2), 116-122. https://doi.org/10.1097/01.HTR.0000314530.30401.70
Riccio, C. A., Reynolds, C. R., Lowe, P., & Moore, J. J. (2002). The continuous performance test: A window on the neural substrates for attention? Archives of Clinical Neuropsychology, 17(3), 235–272. https://doi.org/10.1093/arclin/17.3.235
Shaked, D., Faulkner, L. M. D., Tolle, K., Wendell, C. R., Waldstein, S. R., & Spencer, R. J. (2020). Reliability and validity of the Conners' Continuous Performance Test. Applied neuropsychology. Adult, 27(5), 478–487. https://doi.org/10.1080/23279095.2019.1570199
Peer-Reviewed Gait Papers
Alsalaheen, B. A., Whitney, S. L., Marchetti, G. F., Furman, J. M., Kontos, A. P., Collins, M. W., & Sparto, P. J. (2014). Performance of high school adolescents on functional gait and balance measures. Pediatric physical therapy : the official publication of the Section on Pediatrics of the American Physical Therapy Association, 26(2), 191–199. https://doi.org/10.1097%2FPEP.0000000000000037
Cantena, R.D., van Donkelaar, P., & Chou, L.S. (2007a). Altered balance control following concussion is better detected with an attention test during gait. Gait & Posture, 25, 406–411. https://doi.org/10.1016/j.gaitpost.2006.05.006
Cantena, R.D., van Donkelaar, P., & Chou, L.S. (2007b). Cognitive task effects on gait stability following concussion. Experimental Brain Research, 176, 23–31. https://doi.org/10.1007/s00221-006-0596-2
Cantena, R.D., van Donkelaar, P., & Chou, L.S. (2009). Different gait tasks distinguish immediate vs. long-term effects of concussion on balance control. Journal of EuroEngineering & Rehabilitation, 6, 25. https://doi.org/10.1186/1743-0003-6-25
Chou, L. S., Kaufman, K. R., Walker-Rabatin, A. E., Brey, R. H., & Basford, J. R. (2004). Dynamic instability during obstacle crossing following traumatic brain injury. Gait & Posture, 20, 245–254. https://doi.org/10.1016/j.gaitpost.2003.09.007
Lecci, L., Williams, M., Taravath, S., Frank, H. G., Dugan, K., Page, R., & Keith, J. (2020). Validation of a concussion screening battery for use in medical settings: Predicting centers for disease control concussion symptoms in children and adolescents. Archives of clinical neuropsychology, 35(3), 265-274. https://doi.org/10.1093/arclin/acz041
Parker, T. M., Osternig, L. R., VAN Donkelaar, P., & Chou, L. S. (2006). Gait stability following concussion. Medicine and science in sports and exercise, 38(6), 1032–1040. http://dx.doi.org/10.1249/01.mss.0000222828.56982.a4
Parker, T.M., Osternig, L.R., van Donkelaar, P., & Chou, L.S. (2008). Balance control during gait in athletes and non-athletes following concussion. Medical Engineering & Physics, 12, 1360–1368. https://doi.org/10.1016/j.medengphy.2007.12.006
Peters, D.M., Fritz, S.L., & Krotish, D.E. (2013). Assessing the reliability and validity of a shorter walk test compared with the 10-meter walk test for measurements of gait speed in healthy, older adults. Journal of Geriatric Physical Therapy, 36(1), 24–30. https://doi.org/10.1519/JPT.0b013e318248e20d
Peer-Reviewed BESS Papers
Alberts JL, Thota A, Hirsch J, Ozinga S, Dey T, Schindler DD, Koop MM, Burke D, Linder SM. Quantification of the Balance Error Scoring System with Mobile Technology. Med Sci Sports Exerc. 2015 Oct;47(10):2233-40. doi: 10.1249/MSS.0000000000000656. PMID: 26378948; PMCID: PMC4576723.
Broglio, S. P., Zhu, W., Sopiarz, K., & Park, Y. (2009). Generalizability theory analysis of balance error scoring system reliability in healthy young adults. Journal of Athletic Training, 44 (5), 497–502. https://doi.org/10.4085/1062-6050-44.5.497
Caccese, J., & Kaminski, T. (2014). Comparing Computer-Derived and Human-Observed BESS Scores. Journal of Sport Rehabilitation, 25. https://doi.org/10.1123/jsr.2014-0281
Chang, J. O., Levy, S. S., Seay, S. W., & Goble, D. J. (2014). An alternative to the balance error scoring system: Using a low-cost balance board to improve the validity/reliability of sports-related concussion balance testing. Clinical Journal of Sport Medicine, 24(3), 256–262. DOI: 10.1097/JSM.0000000000000016
Glass, S. M., Napoli, A., Thompson, E. D., Obeid, I., & Tucker, C. A. (2019). Validity of an Automated Balance Error Scoring System. Journal of applied biomechanics, 35(1), 32–36. https://doi.org/10.1123/jab.2018-0056
Harmon, K. G., Drezner, J. A., Gammons, M., Guskiewicz, K. M., Halstead, M., Herring, S. A. et al. (2013). American Medical Society for Sports Medicine position statement: Concussion in sport. British Journal of Sports Medicine, 47(1), 15–26. DOI:10.1136/bjsports-2012-091941
Houston, M. N., Hoch, M. C., Malvasi, S. R., Peck, K. Y., Svoboda, S. J., & Cameron, K. L. (2019). Level of Agreement Between Human-Rated and Instrumented Balance Error Scoring System Scores. Annals of biomedical engineering, 47(10), 2128–2135. https://doi.org/10.1007/s10439-019-02274-5
Howell, D. R., Mannix, R. C., Quinn, B., Taylor, J. A., Tan, C. O., & Meehan, W. P. (2016). Physical activity level and symptom duration are not associated after concussion. American Journal of Sports Medicine, 44, 1040–1046. https://doi.org/10.1177/0363546515625045
Iverson, G. L., & Koehle, M. S. (2013). Normative data for the balance error scoring system in adults. Rehabilitation research and practice, 2013, 846418. https://doi.org/10.1155/2013/846418
Lecci L, Williams M, Taravath S, et al. (2020). Validation of a concussion screening battery for use in medical settings: predicting Centers for Disease Control concussion symptoms in children and adolescents. Arch Clin Neuropsychol. 2020; 35(3):265-274. https://doi.org/10.1093/arclin/acz041
Lecci, L., Williams, M., Taravath, S., et al. (2019). Validation of a concussion screening battery for use in medical settings: Predicting Centers for Disease Control concussion symptoms in children and adolescents. Archives of Clinical Neuropsychology, 35(3), 265-274. https://doi.org/10.1093/arclin/acz041
McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C. et al. (2004). Acute effects and recovery time following concussion in collegiate football players. Sports Medicine Update, 38, 369–371. doi:10.1001/jama.290.19.2556
McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorák, J., Echemendia, R. J., Engebretsen, L., Johnston, K., Kutcher, J. S., Raftery, M., Sills, A., Benson, B. W., Davis, G. A., Ellenbogen, R. G., Guskiewicz, K., Herring, S. A., Iverson, G. L., Jordan, B. D., Kissick, J., McCrea, M., … Turner, M. (2013). Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. British journal of sports medicine, 47(5), 250–258. https://doi.org/10.4085/1062-6050-48.4.05
McLeod, T. C. V., Barr, W. B., McCrea, M., & Guskiewicz, K. M. (2006). Psychometric and measurement properties of concussion assessment tools in youth sports. Journal of Athletic Training, 41 (4), 399. PMID: 17273465; PMCID: PMC1752194
Peer-Reviewed BKG Gait Papers
Byun, S., Han, J.W., Kim, T.H., et al. (2016). Test-retest reliability and concurrent validity of a single tri-axial accelerometer-based gait analysis in older adults with normal cognition. PLoS One, 11(7). https://doi.org/10.1371/journal.pone.0158956
Dever, A., Powell, D., Graham, L., Mason, R., Das, J., Marshall, S. J., Vitorio, R., Godfrey, A. & Stuart, S. (2022). Gait impairment in traumatic brain injury: A systematic review. Sensors, 22(4), 1480. https://doi.org/10.3390/s22041480
Fujiwara, S., Sato, S., Sugawara, A., et al. (2020). The coefficient of variation of step time can overestimate gait abnormality: Test-retest reliability of gait-related parameters obtained with a tri-axial accelerometer in healthy subjects. Sensors, 20(3), 577. https://doi.org/10.3390/s20030577
Godfrey, A., Del Din, S., Barry, G., Mathers, J.C., & Rochester, L. (2015). Instrumenting gait with an accelerometer: a system and algorithm examination. Medical Engineering & Physics, 37(4), 400-407. https://doi.org/10.1016/j.medengphy.2015.02.003
Henriksen, M., Lund, H., Moe-Nilssen, R., et al. (2004). Test–retest reliability of trunk accelerometric gait analysis. Gait Posture, 19(3), 288-297. https://doi.org/10.1016/S0966-6362(03)00069-9
Kluge, F., Gaßner, H., Hannink, J., et al. (2017). Towards mobile gait analysis: Concurrent validity and test-retest reliability of an inertial measurement system for the assessment of spatio-temporal gait parameters. Sensors (Basel, Switzerland), 17(7), 1522. https://doi.org/10.3390/s17071522
Kobsar, D., Osis, S.T., Phinyomark, A., et al. (2016). Reliability of gait analysis using wearable sensors in patients with knee osteoarthritis. Journal of Biomechanics, 49(16), 3977-3982. https://doi.org/10.1016/j.jbiomech.2016.11.047
Lecci, L., Dugan, K., Zeiger, K., et al. (2023). Validation of an accelerometer-based gait assessment: Establishing test-retest reliability, convergent validity, and predictive validity for concussion symptom endorsement. Journal of Concussion, 7, https://doi.org/10.1177/20597002231157947
Lecci, L., Williams, M., Dugan, et al. (2023). Introduction and Clinical Analyses of an Accelerometer-Based Mobile Gait Assessment to Evaluate Neuromotor Sequelae of Concussion in Adolescents and Adults. Journal of Pediatric Neuropsychology, 1-19. https://doi.org/10.1007/s40817-023-00143-7
Maggio, M., Ceda, G.P., Ticinesi, A., et al. (2016). Instrumental and non-instrumental evaluation of 4-meter walking speed in older individuals. PloS One, 11(4). https://doi.org/10.1371/journal.pone.0153583
Moore, S.A., Hickey, A., Lord, S., et al. (2017). Comprehensive measurement of stroke gait characteristics with a single accelerometer in the laboratory and community: a feasibility, validity and reliability study. Journal of NeuroEngineering and Rehabilitation, 4(1). https://doi.org/10.1186/s12984-017-0341-z
Werner, C., Heldmann, P., Hummel, S., et al. (2020). Concurrent validity, test-retest reliability, and sensitivity to change of a single body-fixed sensor for gait analysis during rollator-assisted walking in acute geriatric patients. Sensors, 20(17), 4866. https://doi.org/10.3390/s20174866